我系将于2019年6月9日(周日)举办“ 2019浙江理工大学微分方程研讨会”,会议日程如下,请各位老师及研究生积极参加。
地点:18-918
8:30-9:10 庾建设教授(广州大学)
报告题目:Dynamics of interactive wild and sterile mosquitoes with time delay
9:20-9:50 周展教授(广州大学)
报告题目:The discrete Dirichlet problem involving the mean curvature operator
9:50-10:20 刘斌教授(华中科技大学)
报告题目:Optimal distributed controls of a class of nonlinear dispersive equations with cubic nonlinearity
10:20-10:50 袁沅教授(Memorial University of Newfoundland)
报告题目:A periodic disease transmission model with asymptomatic carriage and latency periods
11:00-11:30 李雪梅教授(湖南师范大学)
报告题目:A KAM-Theorem for Non-conservative Dynamical Systems with Degeneracy and Finite Differentiability
11:30-12:00 黄创霞教授(长沙理工大学)
报告题目:一类标量时滞微分方程的全局动力学分析
1. 庾建设
报告题目:Dynamics of interactive wild and sterile mosquitoes with time delay
报告摘要:To prevent and control the spread of mosquito-borne diseases, such as malaria, dengue fever and Zika, people try to suppress mosquito population density by releasing sterile mosquitoes into the wild field. To investigate the impact of such releases, we develop a delay differential equation model for the interactive wild and sterile mosquitoes in this paper. Different from the existing modeling studies, we assume that only those sexually active sterile mosquitoes play a role for the interactive dynamics. We consider either the number of releases of the useful sterile mosquitoes stays at a constant level or varies as a presumed given function, and give complete analysis on the model dynamics. We establish a threshold of the releases with which the wild mosquito suppression either succeeds or fails provided the number of releases of sterile mosquitoes is above or below the threshold. The model exhibits rich dynamics including bistable, semi-stable, and global stable equilibria. We obtain conditions for the existence and stability of these equilibria, and particularly the necessary and sufficient conditions for the trivial equilibrium to be globally uniformly asymptotically stable. We also consider the case where the releases of sterile mosquitoes are periodic and impulsive. Using numerical examples we illustrate the dynamical features of the model. Brief discussions are provided as well.
报告人简介:庾建设,广州大学教授、博士生导师、原校长、党委书记,国家杰出青年科学基金获得者,国家有突出贡献的中青年专家,国家“百千万人才工程”第一层次、第二层次人选,教育部跨世纪优秀人才。现任教育部数学专业教学指导委员会副主任;长期从事微分方程动力系统、差分方程及生物数学模型的理论与应用研究,先后主持国家自然科学基金项目8项,其中重点项目2项,数学交叉研究平台项目2项;曾获国家级教学成果一等奖1项。省部级科技成果、教学成果一等奖3项。近十年来,致力于生物数学尤其是基因表达以及蚊媒传染疾病防控研究,已在《J. Differential Equations》、《SIAM J. Appl. Math.》、《J. Theor. Biol.》、《J. Math. Biol.》、《Scientific Reports》等重要数学、应用数学国际刊物发表论文多篇。
2. 周展
报告题目:The discrete Dirichlet problem involving the mean curvature operator
报告摘要:In this talk, I will introduce some results on the positive solutions of the discrete Dirichlet problem involving the mean curvature operator by using critical point theory. First, some sufficient conditions on the existence of infinitely many positive solutions are given. We show that, the suitable oscillating behavior of the nonlinear term at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions. Then, the existence of at least two positive solutions is established when the nonlinear term is not oscillatory both at the origin and at infinity. Examples are also given to illustrate our main results at last.
报告人简介:周展,博士、二级教授、博士生导师;现任广州大学应用数学研究中心执行主任,数学与信息科学学院副院长。教育部“长江学者和创新团队发展计划”创新团队带头人,享受国务院政府特殊津贴专家,广州市“优秀专家”,中国数学会理事。1985年7月毕业于湘潭大学数学系获学士学位,1988年7月毕业于湖南大学应用数学专业获硕士学位并留校任教,1998年6月获湖南大学应用数学专业博士学位。1999年6月破格晋升为教授,2003年12月被遴选为博士生导师。受国家留学基金委资助,2000年9月前往加拿大访问一年。2004年10月被引进到广州大学工作,2011年7月应邀在香港城市大学访问1个月,2014年7月-8月应邀访问加拿大罗瑞尔大学、西安大略大学、新布伦瑞克大学。先后主持长江学者和创新团队发展计划2项、国家自然科学基金6项、高等学校博士点基金2项及教育部优秀青年教师资助计划等科研项目多项。作为负责人,获广州市首批建设科研创新学术团队。近年来在《J. Differential Equations》、《Nonlinearity》、《Proc. Royal Soc. Edinburgh》和《中国科学》(英文版)等重要刊物发表高水平科研论文80多篇,先后获得湖南省科技进步一等奖、湖南省自然科学优秀论文一等奖、第五届“秦元勋数学奖”、广东省高等学校“千百十人才培养工程”第六批先进个人。
3. 刘斌
报告题目:Optimal distributed controls of a class of nonlinear dispersive equations with cubic nonlinearity
报告摘要:This talk is devoted to the optimal distributed control problem governed by a class of nonlinear dispersive equations with cubic nonlinearity, which contains the famous Novikov equation as special case. We first investigate the existence and uniqueness of the weak solution for the controlled system, and then find an optimal solution for the controlled system with the generalized cost functional. Moreover, by means of the method suggested by A. Ya. Dubovitskii and A.A. Milyutin, we establish the first order necessary optimality condition of optimal control for the controlled system in the fixed final horizon case.
报告人简介:刘斌,教授,博士生导师,理学博士,有博士后经历。现为华中科技大学数学与统计学院党委书记。华中科技大学“华中学者”特聘岗(2012.1---),享受国务院政府特殊津贴,教育部高等学校数学基础课程教学分委员会委员(2006—2012),教育部高等学校大学数学课程教学指导委员会委员(2013---),中国工业与应用数学学会理事(2016---),湖北省工业与应用数学学会副理事长(2016----),湖北省数学学会公共数学专业委员会主任,《应用数学》编委。宝钢优秀教师奖获得者,华中科技大学教学名师,美国《Mathematical Reviews》评论员。主要从事微分方程和和控制理论的教学与研究,主持过国家自然科学基金面上项目4项,从2000年到现在,以第一作者或通讯作者发表SCI收录论文86篇,目前SCI他引H因子为16,他引总次数为1120次,单篇最高他引114次。
4. 袁沅
报告题目:A periodic disease transmission model with asymptomatic carriage and latency periods
报告摘要:In this talk, the global dynamics of a periodic disease transmission model with two delays in incubation and asymptomatic carriage periods is investigated. We first derive the model system with a general nonlinear incidence rate function by stage-structure. Then, we identify the basic reproduction ratio $\mathcal{R}_0$ for the model and present numerical algorithm to calculate it. We obtain the global attractivity of the disease-free state when $\mathcal{R}_0<1$ and discuss the disease persistence when $\mathcal{R}_0>1$. We also explore the coexistence of endemic state in the nonautonomous system and prove the uniqueness with constants coefficients. Numerical simulations are provided to present a case study regarding the meningococcal meningitis disease transmission and discuss the influence of carriers on $\mathcal{R}_0$.
报告人简介:袁沅,1984年于武汉大学获得学士学位,1988年于中南大学获得硕士学位,2002年于加拿大西安大略大学(University of Western Ontario)获得博士学位。2002年荣获NSERC(加拿大国家自然科学基金)资助在滑铁卢大学(University of Waterloo)做短暂博士后研究,随后于2002年9月起受聘于加拿大纽芬兰纪念大学(Memorial University of Newfoundland)至今,现为该校数学与统计系终身正教授和博士生导师。袁教授主要研究方向包括非线性动力系统的稳定性及分支分析、时滞微分方程及其在神经网络和生物数学等的应用、微分方程的符号及数值计算方法。现已在SIAM Journal of Applied Mathematics, Journal of Mathematical Biology, Journal of Mathematical Analysis and Applications, Journal of Differential Equations, Nonlinear Analysis: Real World Applications, SIAM Journal on Applied Dynamical Systems等主要应用数学及生物数学杂志发表论文近六十篇。研究成果深受同行好评及引用,研究一直受到加拿大NSERC的资助。
5. 李雪梅
报告题目:A KAM-Theorem for Non-conservative Dynamical Systems with Degeneracy and Finite Differentiability
报告摘要:In this talk, we give a KAM-theorem about the existence of invariant tori in non-conservative dynamical systems with finitely differentiable vector fields and multiple degeneracies under the assumption that the integrable part is finitely differentiable with respect to parameters, by constructing approximation and inverse approximation lemmas in which all functions are finitely differentiable in parameters. The theorem can be used to deal with the persistence of quasi-periodic invariant tori in multiple Hopf bifurcations and zero-multiple Hopf bifurcations etc.
报告人简介:李雪梅,湖南师范大学数学与统计学院教授、博士生导师。主要从事常微分方程和时滞微分方程拟周期解(不变环面)的存在性与正则性、人工神经网络的动力学性质等方面的研究,在JDE、JDDE和DCDS等刊物上发表论文40余篇,主持并完成了国家自然科学基金面上项目3项。2002年在湖南大学获得应用数学博士学位,从1987年在湖南师范大学工作至今。应邀多次访问中科院数学与系统科学研究院、复旦大学、美国德州大学奥斯汀分校、西班牙CRM研究所等。
6. 黄创霞
报告题目:一类标量时滞微分方程的全局动力学分析
报告摘要:研究了一类具有Allee效应的时滞微分方程平衡点的存在性与稳定性,吸引域的刻画、异宿轨道与分支情形。
报告人简介:黄创霞,教授,博士研究生导师,长沙理工大学数学与统计学院院长。2006年6月获湖南大学应用数学专业博士学位,主要从事时滞微分方程等领域的研究。主持国家自然科学基金项目2项、教育部重点项目1项、湖南省杰青1项。主持中国博士后基金特别资助项目、一等资助项目科研课题10余项。主持湖南省学位与研究生教育教学改革研究课题和湖南省教研教改课题2项。在Journal of Differential Equations、IEEE Transactions on Neural Networks、Neural Networks 、Nonlinear Analysis:RWA等国际权威SCI杂志上发表科研论文50余篇(第一作者论文SCI检索40余篇),目前为IEEE Transactions on Neural Networks、Nonlinear Analysis:RWA、Journal of Mathematical Analysis and Applications等多个学术期刊的论文评审人。
7. 欧春华
报告时间:2019-6-3(星期一)下午1:30-3:30
报告地点:18-918
报告题目:Minimal-speed selection of traveling waves to the Lotka-Volterra competition model
报告摘要:In this talk, the minimal-speed determinacy of traveling wave fronts of a two-species competition model of diffusive Lotka-Volterra type is investigated. First, a cooperative system is obtained from the classical Lotka-Volterra competition model. Then, we apply the upper-lower solution technique on the cooperative system to study the traveling waves as well as its minimal-speed selection mechanisms: linear or nonlinear. New types of upper and lower solutions are established. Previous results for the linear speed selection are extended, and novel results on both linear and nonlinear selections are derived.
报告人简介:欧春华, 教授,博士, 现为加拿大纽芬兰纪念大学(Memorial University of Newfoundland)终身正教授、博导。1989年北京大学数学系本科毕业,1998年至2000年在复旦大学数学系硕士研究生, 2003年获得香港城市大学数学系博士学位。 2003年至2005年在加拿大York University 从事博士后研究工作。2005年开始在加拿大纽芬兰纪念大学数学与统计部任助理教授,2009年破格升为副教授,2010年获得终身教职。 2015年升为正教授。目前已在国际学术刊物上发表论文40多篇, 其中大多数论文在世界知名及顶级杂志上发表: 在应用数学顶级杂志--美国工业数学会刊SIAM系列已发表7篇论文, 于2012年获得著名杂志 J. Differential Equations最佳引用奖。自博士毕业后, 应邀在四十多个国际和国内数学大会上作过邀请报告并参与组织多个国际学术会议。目前担任加拿大大西洋数学会(所)常务理事和国际期刊 Boundary value problems编委。