理学院-数学系
·English
 网站首页  系科概况  学科平台  师资队伍  科学研究  教学研究  学术交流  研究中心  人才培养  人才引进  下载专区  English 
文章内容页
当前位置: 网站首页>>学术交流>>学术报告>>正文

2018-6-26-北大国际数学中心刘超博士报告:Cosmological Newtonian limits on large scales

时间:2018-06-24 12:49:15  点击数:

 

报告题目:Cosmological Newtonian limits on large scales

报告时间:2018年6月26日,上午10:30-11:30

地点:18-925

报告人:刘超(北大国际数学中心)

摘要: I will give a very brief overview of the rigid mathematical proof of one basic question in cosmological simulation: on what space and time scales Newtonian cosmological simulations can be trusted to approximate relativistic cosmologies?

We resolve this question by investigating Einstein-Euler systems with positive cosmological constant and Poisson-Euler systems under a small initial data condition. Informally, we establish the initial data set in the meaning of cosmological scale which solves constraint equations and construct the existence of 1-parameter families of $\epsilon$-dependent solutions to Einstein-Euler systems with a positive cosmological constant that:

(1) are defined for $\epsilon \in (0,\epsilon_0)$ for some fixed constant $\epsilon_0>0$,

(2) exist globally on $(t,x^i)\in[0,+\infty)\times \mathbb{R}^3$, % and are geodesically complete to the future,

(3) converge, in a suitable sense, as $\epsilon \searrow 0$ to solutions of the cosmological Poison-Euler equations of Newtonian gravity, and

(4) are small, non-linear perturbations of the FLRW fluid solutions (via conformal singular formulation of Einstein-Euler system).  

This talk originates from a joint work with Todd Oliynyk.

 

报告人简介:刘超, 男, 北京大学北京国际数学中心博士后,澳大利亚Monash大学博士毕业。主要研究兴趣是偏微分方程,数学广义相对论,严格牛顿极限理论和相对论流体。

 

 

上一条:2018-6-27-浙江工商大学傅可昂教授报告:On a two-dimensional risk model with time-dependent claim sizes and risky investments 下一条:2018-6-26-厦门大学王金花博士报告:Future Stability of the 1+3 Milne model for Einstein-Klein-Gordon system

关闭

 

返回首页 关于我们 新闻动态 学术报告 学生动态 数据库资源

地址:杭州下沙高教园区2号大街浙江理工大学数学科学系  邮编:310018  电话:0571-86843240  版权:浙江理工大学数学科学系